Home
Class 11
MATHS
If A+B+C = pi then prove that Sin 2A - S...

If `A+B+C = pi` then prove that `Sin 2A - Sin 2B + Sin 2C = 4 cosA sinB cosC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cosAsinBcosC

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A + B + C =pi , prove that : cos 2A - cos 2B- cos 2C= -1+4 cos A sinB sin C .