Home
Class 12
MATHS
The fraction (2(sqrt(2)+sqrt(6)))/(3(sqr...

The fraction `(2(sqrt(2)+sqrt(6)))/(3(sqrt(2+sqrt(3)))` is equal to (A) `(2sqrt(2))/3` (B) `1` (C) `(2sqrt(3))/3` (D)` 4/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

sqrt(6-4sqrt(3)+sqrt(16-8sqrt(3))) is equal to 1-sqrt(3) b.sqrt(3)-1 c.2(2-sqrt(3)) d.2(2+sqrt(3))

(2sqrt(27)-sqrt(75)+sqrt(12)) is equal to sqrt(3)(b)2sqrt(3) (c) 3sqrt(3)(d)4sqrt(3)

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then a+(1)/(a) is equal to