Home
Class 12
PHYSICS
Ampere's law provides us an easy way to ...

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is `ointvecB.dl=mu_0I_("in")`.
The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop.
If the current density in a linear conductor of radius a varies with r according to relation `J=kr^2`, where k is a constant and r is the distance of a point from the axis of conductor, find the magnetic field induction at a point distance r from the axis when rlta. Assume relative permeability of the conductor to be unity.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the current density in a linear conductor of radius 'a' varies with r according to relation J=kr^2 , where k is a constant and r is the distance of a point from the axis of conductor. Find the magnetic field induction at a point distance r from the axis, when (i) rlta and (ii) rgta .

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. Only the current inside the Amperian loop contributes in

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. Only the current inside the Amperian loop contributes in

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. In the above question, find the magnetic field induction at a point distance r from the axis when rgta. Assume relative permeability of the medium surrounding the conductor to be unity.

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. In the above question, find the magnetic field induction at a point distance r from the axis when rgta. Assume relative permeability of the medium surrounding the conductor to be unity.

Using Ampere's circuital theorem, calculate the magnetic field due to an infinitely long wire carrying current I.

A long cylindrical conductor of radius R carries a current i as shown in the figure. The current density J varies across the cross-section as J = kr^(2) , where, k is a constant. Find an expression for the magnetic field B at a distance r (lt R) from the axis

A long cylindrical conductor of radius R carries a current i as shown in the figure. The current density J varies across the cross-section as J = kr^(2) , where, k is a constant. Find an expression for the magnetic field B at a distance r (lt R) from the axis

Solenoid|Magnetic Field Lines|Ampere's Law