Home
Class 10
MATHS
If (x+y) : (x-y) = 53 : 41, then 1/x : 1...

If `(x+y) : (x-y) = 53 : 41`, then `1/x : 1/y = ?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y = 1, and x - y = 1 , then y = ?

Find x,y if (x+y 1) = (1, x-y)

If 12 x + 17 y = 53 and 17 x + 12 y = 63 then find the values of (x + y )

If x ^(y) + y ^(x) = a ^(b) then show that (dy)/(dx) =- ((y x ^(y-1) + y^(x) log y)/( x ^(y) log x + x y ^(x -1)))

Solve 41x + 53y = 135 and 53x + 41y = 147.

Express 53overset(-)( 629) as a fractions in the form (x) / ( y) where x, y , in 1 and y ne 0

If x^y+y^x= (x+y)^(x+y) , then prove that dy/dx= ((x+y)^(x+y) [1+log(x+y)]-yx^(y-1)-y^xlogy)/(x^ylogx+xy^(x-1) -(x+y)^(x+y) [1+log(x+y)]

If x-y=1 and x^(2)+y^(2)=41, then the value of x+y will be (a)5 or 4(b)-5 or -4 (c) +-9(d)+-1

A ray of light is incident along a line which meets another line, 7x-y+1 = 0 , at the point (0, 1). The ray isthen reflected from this point along the line, y+ 2x=1 . Then the equation of the line of incidence of the ray of light is (A) 41x + 38 y - 38 =0 (B) 41 x - 38 y + 38 = 0 (C) 41x + 25 y - 25 = 0 (D) 41x - 25y + 25 =0