Home
Class 12
MATHS
(log(10) x)^2 + log(10) x^2 = (log(10) 2...

`(log_(10) x)^2 + log_(10) x^2 = (log_(10) 2)^2 -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

find the non negative square root of product of reciprocal of roots of thhe equation (log_(10)^(2)x)+log_(10)(x^(2))=log_(10)^(2)2-1

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

Find the non negative square root of product of reciprocal of roots of the equal to: log_(10)^(2)x+log_(10)x^(2)=log_(10)^(2)2-1

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Positive numbers x,y and z satisfy xyz=10^(81) and (log_(10)x)(log_(10)yz)+(log_(10)y)(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :