Home
Class 12
MATHS
If x=acos^3t , y=bsin^3t then (dy)/(dx)=...

If `x=acos^3t , y=bsin^3t` then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=acos^(3)t and y=asin^(3)t , then (dy)/(dx) is equal to

If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^((2)/(3))=?

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x=acos^30theta,y=bsin^30theta, find dy/dx .

If x = aCos^3 θ and y= aSin^3 θ then dy/dx=

If x=acos^(3)t,y=asin^(3)t,"show that "(dy)/(dx)=-((y)/(x))^((1)/(3))

If x=acos^3theta,y=bsin^3theta ,fin d (d^3y)/(dx^3) at theta=0.

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=