Home
Class 12
MATHS
The product cot123^@*cot133^@*cot137^@*c...

The product `cot123^@*cot133^@*cot137^@*cot147^@,` when simplified is equal to: (a)`-1` (b) `tan37^@` (c)`cot33^@` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The product cot123^0dotcot133^0dotcot137^0dotcot147^0, when simplified is equal to: (a) − 1 (b) tan 37^ ∘ (c) cot 33^ ∘ (d) 1

cot7(1^@)/2-cot37(1^@)/2-cot52(1^@)/2+cot82(1^@)/2 =

Value of (3+cot80^(@)cot20^(@))/(cot80^(@)+cot20^(@)) is equal to (a) cot20^(@)(b)tan50^(@)(c)cot50^(@)(d)cot sqrt(20^(@))

The expression (tan 57^@ + cot37^@)/(tan 33^@ + cot 53^@) is equal to

(1+tan^2A)/(1+cot^2A) is equal to sec^2A (b) -1 (c) cot^2A (d) tan^2A

Simplify (cot 55^(@)cot35^(@)-1)/(cot55^(@)+cot35^(@))

cot B cot C+cot C cot A+cot A cot B=1

If cot A +(1)/( cot A) =2 , then cot^2 A + (1)/( cot^2 A) is equal to

The value of cot (tan^-1 x + cot^-1 x) is equal to :