Home
Class 12
MATHS
lim(x->0) (e^(1//x))/(e^(1/x +1)) (i...

`lim_(x->0) (e^(1//x))/(e^(1/x +1))` (i)`0` (ii)`1` (iii) does not exist (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x-gt0) (e^(3x)-1)/(log(1+5x))

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1)

lim_(x rarr0)(1+e^(-(1)/(x)))/(1-e^(-(1)/(x))))

If lim_(x to 0)x^((1)/(1-x))=e^(-1)

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

Show that lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Lt_(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not exist