Home
Class 12
MATHS
lim(n->oo) (1.n^2+2(n-1)^2+3(n-2)+...+n....

`lim_(n->oo) (1.n^2+2(n-1)^2+3(n-2)+...+n.1^2)/(1^3+2^3+....n^3)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_ (n rarr oo) (1.n + 2 (n-1) +3 (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2) + 3 ^ ( 2) + ... + n ^ (2))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_ (n rarr oo) [(1 * n + 2 (n-1) + ... + n * 1) / (1 ^ (3) + 2 ^ (3) + ... + n ^ (3) ) +1] ^ (n)

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -