Home
Class 12
MATHS
In a triangle ABC, if sin A sin (B-C)=si...

In a triangle ABC, if `sin A sin (B-C)=sin C sin (A - B),` then prove that `cot A, cot B, cot C` are in A.P..

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If in a triangle ABC, sin A, sin B, sin C are in A.P, then

If a^(2),b^(2),c^(2) are in A.P.then prove that cot A,cot B,cot C are in A.P.

If a^(2),b^(2),c^(2) are in A.P.prove that cot A,cot B,cot C are in A.P.

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C= cot D.

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If a^(2),b^(2) and c^(2) be in A.P. prove that cot A,cot B and cot C are in A.P. also.