Home
Class 11
MATHS
Theorem 4 :If A+B+C=pi then prove that s...

Theorem 4 :If `A+B+C=pi` then prove that `sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

In triangleABC,A+B+C=pi ,show that sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C /2)

Statement -1: sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@) Statement-2: If A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)