Home
Class 11
MATHS
(x^2+3x+2)^2 - 8(x^2+3x) -4 =0...

`(x^2+3x+2)^2 - 8(x^2+3x) -4 =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise: (1)2x^(2)-x-6=0(2)a^(3)-0.216 (3) (x^(2)-3x)^(2)-8(x^(2)-3x)-20

Solve : (i) (x^(2)-x)^(2)+5(x^(2)-x)+4=0 (ii) (x^(2)-3x)^(2)-16(x^(2)-3x)-36=0

Multiply the (3x ^(2) + 4x - 8). ( 2x ^(2) - 4x + 3)

Simplify : 15x-[8x^2 + 3x^2 - {8x^2 - (4-2x-x^3)-5x^3}-2x]

A quadratic equation whose roots are cosec^2theta and sec^2theta can be (1) x^2-2x+ 2 =0 (2) x^2-3x + 3 = 0 (3) x^2-3x+ 4= 0 (4) x^2-5x+5= 0

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

If x is not equal to 2 or -2 . Which s equivalent to (3x^2 - 8x +4)/(x^2 - 4) ?

|{:( x -2, 2x -3, 3x -4), ( x-4, 2x - 9, 3x - 16), ( x-8, 2x - 27, 3x - 64):}|= 0, then x is equal to: a)-2 b)3 c)-4 d)4