Home
Class 11
MATHS
lim(x->0) (tanx-sinx)/x^n (n in N) exist...

`lim_(x->0) (tanx-sinx)/x^n (n in N)` exists then sum of all possible values of `n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(tanx-sinx)/x^3=M/N and M = 3, then the value of N is

If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

Let f(x)= lim_(n->oo)(sinx)^(2n)

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If x_1, x_2, .....x_n are n observations such that sum_(i=1)^n (x_i)^2=400 and sum_(i=1)^n x_i=100 then possible values of n among the following is

If ("lim")_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.