Home
Class 12
MATHS
If f(x) = cos x - int0^x (x-t) \ f(t) \ ...

If `f(x) = cos x - int_0^x (x-t) \ f(t) \ dt`, then `f''(x) + f(x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f(x) =int_(x)^(-1) |t|dt , then for any x ge 0 , f(x) equals

If F(x) = int_3^x (2 + d/(dt) cos t)dt , then F' (pi/6) equals :