Home
Class 11
MATHS
Prove that lim(x->a^+) [x]=[a] for all ...

Prove that `lim_(x->a^+) [x]=[a]` for all `a in R,` where [*] denotes the greatest integer

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (lnx^n-[x])/[x], n in N where [x] denotes the greatest integer is

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

Find the value of lim_(xrarr3) [x] = ______ where [.] denotes the greatest integer

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(x rarr oo) (log x)/([x]) , where [.] denotes the greatest integer function, is

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is