Home
Class 10
MATHS
Prove the following trigonometric identi...

Prove the following trigonometric identities: `(tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1) .

Prove the following : (All angles are acute angles.) (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)

Prove the following identities: (tantheta+sectheta-1)/(tantheta-sectheta+1)=(1+sintheta)/(costheta)

Prove the trigonometric identities: (1-sintheta)/(1+sintheta)=(sectheta-tantheta)^2

prove (tantheta +sectheta-1)/(tantheta-sectheta+1) = (1+sintheta)/(costheta)

Prove the following trigonometric identities: sqrt((1-sintheta)/(1+sintheta))=sectheta-tantheta sqrt((1+costheta)/(1-costheta))=cos e ctheta+cottheta

Prove the following identities: (1-sintheta)/(1+sintheta)= (sectheta-tantheta)^2

Prove that (tantheta +sectheta -1)/(tantheta-sectheta+1)=(1+sintheta)/costheta

Prove the following identities: (sintheta+costheta)(tantheta+cottheta)=sectheta+cosectheta

Prove the following identities: (1+sintheta)/(1-sintheta)=(sectheta+tantheta)^2