Home
Class 11
MATHS
Sum to n terms of the series 1/((1+x)(1+...

Sum to n terms of the series `1/((1+x)(1+2x))+1/((1+2x)(1+3x))+1/((1+3x)(1+4x))+` is (i)`(nx)/((1+x)(1+nx))` (ii)`(n)/((1+x)(1+(n+1)x))` (iii)`(x)/((1+x)(1+(n-1)x))` (iv) `(nx)/((1+x)(1+(n+1)x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)++n(1-x)(1-2x)(1-3x)[1-(n-1)x] .

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)++n(1-x)(1-2x)(1-3x)[1-(n-1)x] .

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+...+n(1-x)(1-2x)(1-3x)...[1-(n-1)x

If (n^(n))/(n!)=(nx)/((n-1)!), x =

- (((n) / (1)) * ((1 + x) / (1 + nx)) + ((n (n-1)) / (1.2)) ((1 + 2x) / ((1 + nx) ^ (2))) - ((n (n-1) (n-2)) / (1.2.3)) ((1 + 3x) / ((1 + nx) ^ (3)))

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Sum the series tan^-1 (x/(1+1*2x^1))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

Sum the series tan^-1 (x/(1+1*2x^2))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))