Home
Class 6
MATHS
" 4."x^(2)+(1)/(x^(2))-2-3x+(3)/(x)...

" 4."x^(2)+(1)/(x^(2))-2-3x+(3)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise the following expressions : (i) ax-ay+bx-by " " (ii) x^(2)-x-ax+a " " (iii) x^(4)+x^(3)+x^(2)+x (iv) 16(a+b)^(2)-4a-4b " " (v) x^(2)+(1)/(x^(2))+2-3x-(3)/(x) " " (vi) x^(2)-((a)/(b)+(b)/(a))x+1 (vii) x^(2)+(a-(1)/(a))x-1 " " (viii)ab(x^(2)+y^(2)+xy(a^(2)+b^(2)) " "(ix) (ax+by)^(2)+(bx-ay)^(2)

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

If |x|lt1 then (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+....=

Solve for x:4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4