Home
Class 12
MATHS
lim(x->0)(1-cos4x)/(1-cos5x)...

`lim_(x->0)(1-cos4x)/(1-cos5x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->0)(1-cos5x)/(1-cos6x)

Evaluate lim_(xto0)(1-cos2x)/(1-cos4x)

lim_(x rarr0)(1-cos4x)/(1-cos6x)

Evaluate (i)lim_(xrarr0)((1-cos 4x)/(1-cos5x)) (ii) lim_(xrarr0)((1-cosmx)/(1-cosnx)).

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

Evaluate the following limit: (lim)_(x rarr0)(1-cos5x)/(1-cos6x)

Evaluate the following : lim_(xrarr 0)(1-cos 5x)/(1-cos 6x) .

evalute lim_(x rarr0)((1-cos x)/(1-cos2x))

lim_(x rarr0)((1-cos x)/(1-cos3x))

Evaluate the following limits : underset(xrarr0)"lim"(1-cos4x)/(1-cos5x)