Home
Class 12
MATHS
" If "|=-2-t|=|z||sin((pi)/(4)-A sg(z))|...

" If "|=-2-t|=|z||sin((pi)/(4)-A sg(z))|" where "i=sqrt(-1)" then "locvs" of "z" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |sqrt2z- 3+2i|= |z| |sin ((pi)/(4) + arg z_(1)) + i cos((3pi)/(4) - arg z_(1))| , where z_(1)=1+ (1)/(sqrt3)i , then locus of z is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to