Home
Class 12
MATHS
lim(x->2^-)[(x^2)/a]^(1/(|x-2|))=1 Then ...

`lim_(x->2^-)[(x^2)/a]^(1/(|x-2|))=1` Then find the range of value of a. Here [*] represents greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

Solve tan x=[x], x in (0, 3pi//2) . Here [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.