Home
Class 9
MATHS
1,6a=2^(1/3)-2^(-1/3)" iprove that "2a^(...

1,6a=2^(1/3)-2^(-1/3)" iprove that "2a^(3)+6a=3

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=2^(1/3)-2^(-1/3) show that 2a^(3)+6a-3=0

a=2^((1)/(3))-2^(-(1)/(3)), then find the value of 2a^(2)+6a-3

If a = 2 + 2^(1/3)+2^(2/3) then value of a^3-6a^2+6a is

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

The value of (a^(2/3) +2a^(1/2)+3a^(1/3) +2a^(1/6)+1)(a^(1/3)-2a^(1/6)+1)-a^(1/2)(a^(1/2)-2) , when a = 7, is: (a^(2/3) +2a^(1/2)+3a^(1/3) +2a^(1/6)+1)(a^(1/3)-2a^(1/6)+1)-a^(1/2)(a^(1/2)-2) , का मान ज्ञात कीजिए, जब a= 7 है:

If A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A^(3)=