Home
Class 12
MATHS
" If "y=(sin^(-1)x)^(2)," then the value...

" If "y=(sin^(-1)x)^(2)," then the value of "(1-x^(2))y_(2)-xy_(1)" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(cos^(-1)x)^(2) , then the value of (1-x^(2))y_(2)-xy_(1) is -

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=(cos^(-1)x)^(2) , then prove that : (1-x^(2))y_(2)-xy_(1)-2=0 .

If y=((sin^(-1)x)^(2))/(2) , then (1-x^(2))y_(2)-xy_(1)=

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .