Home
Class 11
MATHS
The solution of the equation x sin theta...

The solution of the equation `x sin theta d theta+(x^3-2x^2cos theta + cos theta)dx=0` is `2 cos theta = x + cxe^(-x^2)`. Statement-2: Integrating factor `e^(x^2)/x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

8sin theta cos theta cos2 theta cos4 theta=sin x rArr x=

8sin theta cos theta*cos2 theta cos4 theta=sin x rArr x=

If 2cos theta=x+1/x then 2cos^2 theta=

(sin 3 thea - sin theta sin ^(2) (2 theta ))/( sin theta + sin 2 theta cos theta ) = cos x implies x =

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is

If x=sin theta-theta cos theta , y=cos theta+theta sin theta then (d^(2)y)/dx ^2=

If x = cos theta + theta sin theta, y = sin theta - theta cos theta then (d ^(2) y)/(dx ^(2)) =

(sin3 theta-sin theta sin^(2)(2 theta))/(sin theta+sin2 theta cos theta)=cos x then x=

(sin3 theta-sin theta * sin ^ (2) (2 theta)) / (sin theta + sin2 theta * cos theta) = cos x rarr x =