Home
Class 12
MATHS
y=sin^(-1){(x^(2))/(sqrt(x^(4)+a^(4)))}...

y=sin^(-1){(x^(2))/(sqrt(x^(4)+a^(4)))}

Promotional Banner

Similar Questions

Explore conceptually related problems

(x.sin^(-1)x^(2))/(sqrt(1-x^(4)))

If sin y=(x^(2))/(sqrt(a^(4)+x^(4))), then (dy)/(dx)x=1=

If y=log(x^(2)+sqrt(x^(4)-a^(4)))," then "y_(1)sqrt(x^(4)-a^(4))=

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))+sin(2tan^(-1)theta*sqrt((1-x)/(1+x))) then prove that ,4(1-x^(2))^(3)((d^(2)y)/(dx^(2)))^(2)+4x=x^(2)+4

Write simplest form: sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4)))

sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4))), write simplest from

Find (dy)/(dx) if y=sin^(-1)[(6x-4sqrt(1-4x^(2)))/(5)]

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

sin ^ (- 1) ((x ^ (2)) / (4) + (y ^ (2)) / (9)) + cos ^ (- 1) ((x) / (2sqrt (2)) + (y) / (3sqrt (2)) - 2)

If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cos ec^(-1)z, then prove that sqrt(z^(2)-1)=(sqrt(1+x^(2))-xy)/(x+y sqrt(1-x^(2)))