Home
Class 12
MATHS
The inequalities y(-1)>=-4,y(1)<=0 and y...

The inequalities `y(-1)>=-4,y(1)<=0` and `y(3)>=5` are known to hold for `y=ax^2+bx+c` then the least value of 'a' is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of ax^2+bx+c,(a>0) is

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)=ax^(2)+bx+c then the value of a+b+c is

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)=ax^(2)+bx+c then the value of a+b+c is

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)= ax^(2)+bx+c then the value of a+b+c is

If y= cot ^(-1)""(b-ax)/(a+bx), then the value of (dy)/(dx) is-