Home
Class 12
MATHS
If the function f(x) = {(kx + 5 ", when ...

If the function `f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt 2):}` is continuous at x = 2 then k = ?

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = {(1 + x", when " x le 2),(5 -x ", when " x gt 2):} is

If f(x) = {(kx-1, "when" x lt 2),(x+1,"when" x gt 2),(3, "when: x = 2):} is continuous at x = 2 , then k =

If f(x) = {(kx-1, "when" x lt 2),(x+1,"when" x gt 2),(3, "when: x = 2):} is continuous at x = 2 , then k =

Find the value of k , so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

If the function f(x) ={{:((sinx)/(kx)+k",when "xne0),(2" when "x=0):} is continuous at x = 0, find k.

For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" "5", " xgt2):}, is continuous at x=2.