Home
Class 9
MATHS
" (trove that "a^(2)+b^(2)+c^(2)-ab-bc-c...

" (trove that "a^(2)+b^(2)+c^(2)-ab-bc-ca" is always non-negative for all values of "a,b" and "c

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a^(2)+b^(2)+c^(2)-ab-bc-ca is always non-negative for all values of a,b and c.

Prove that a^(2)+b^(2)+c^(2)-ab-bc-ca is always non-negative for all values of a,b and c

Prove that a^2+b^2+c^2-a b-b c-c a is always non-negative for all values of a ,b a nd c.

Prove that a^2+b^2+c^2-a b-b c-c a is always non-negative for all values of a ,\ b\ a n d\ c

The value of determinant |(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2))| is a)always non -negative b)always non-positive c)always zero d)can't say anything

If a^(2)+b^(2)+c^(2)=19 and ab+bc+ca=3 Find the value of a+b+c

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

The value of det[[a,b,ca^(2),b^(2),c^(2)bc,ca,ab]] equal to