Home
Class 9
MATHS
" (ii) "x^(2)+6x+9-25y^(2)...

" (ii) "x^(2)+6x+9-25y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : (i) 36x^(2)+60xy+25y^(2) (ii) (49)/(9)x^(2)-(35)/(6)xy+(25)/(16)y^(2)

Factorise : (i) 36x^(2)+60xy+25y^(2) (ii) (49)/(9)x^(2)-(35)/(6)xy+(25)/(16)y^(2)

Factorize following experssions (i) x^(4)-y^(4)" (ii)"9a^(2)-(2x-y)^(2)" (iii)"4x^(2)-9y^(2)-6x-9y

Factorize following experssions (i) x^(4)-y^(4)" (ii)"9a^(2)-(2x-y)^(2)" (iii)"4x^(2)-9y^(2)-6x-9y

Factorise : x^(2) + 6x + 9 - 4y^(2)

Find co - ordinates of foci, water length of major axis and minor aixs, eccentricity and length of latus rectum of following ellipse. Length of latus rectum of following ellipse. (1) 16x^(2) + 9y^(2) = 1 (2) 3x^(2) + 2y^(2) = 6 (3) 4x^(2) + 9y^(2) = 1 (4) (x^(2))/(49) + (y^(2))/(16) = 1 (5) 9x^(2) + 25y^(2) = 225 (6) 7x^(2) + 10y^(2) = 70 (7) 16x^(2) + 5y^(2) = 80

Convert the following equation of ellipse into standard from . (i) 16x^(2)+9y^(2)=144 (ii) 9x^(2)+25y^(2)=225

Convert the following equation of ellipse into standard from . (i) 16x^(2)+9y^(2)=144 (ii) 9x^(2)+25y^(2)=225

The eccentricity of the conic 9x^(2) + 25y^(2) - 18 x - 100 y = 116 is

The vertices of the ellipse 9x^(2) + 25y^(2) - 90x - 150y + 225 = 0 are