Home
Class 12
MATHS
([(b+c)^(2),a^(2),a^(2)],[b^(2),(c+a)^(2...

([(b+c)^(2),a^(2),a^(2)],[b^(2),(c+a)^(2),b^(2)],[c^(2),c^(2),(a+b)^(2)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]]=kabc(a+b+c)^(3)

Prove that abs[[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]] =2abc(a+b+c)^3

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Simplify: (a^(2)-(b-c)^(2))/((a+c)^(2)-b^(2))+(b^(2)-(a-c)^(2))/((a+b)^(2)-c^(2))+(c^(2)-(a-b)^(2))/((b+c)^(2)-a^(2))

Using properties of determinants, prove that: |[b^2+c^2,a^2,a^2],[b^2,c^2+a^2,b^2],[c^2,c^2,a^2+b^2]|=4a^2b^2c^2

The determinant |[a^2, a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[ c^2,c^2-(a-b)^2,ab]| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2b^2c^2 d. (a-b)(b-c)(c-a)