Home
Class 12
MATHS
Number of real value of x satisfying the...

Number of real value of `x` satisfying the equation `|sin x cos x | + sqrt(2+tan^2 x + cot^2 x)=sqrt3` in `[0, 2pi]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation |sinx cosx|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt3

Number of roots of the equation |sin x cos x|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt(3),x in[0,4 pi] are

The number of roots of the equation |sin x cos x| + sqrt(2 + tan^(2) x + cot ^(2) x) = sqrt(3), " where " x in [0, 4 pi] is

The number of values of x in [0,2 pi] satisfying the equation |cos x sin x|>=sqrt(2) is

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

The variable x satisfying the equation |sin x cos x|+sqrt(2+tan^(2)+cot^(2)x)=sqrt(3) belongs to the interval [0,(pi)/(3)](b)((pi)/(3),(pi)/(3))(c)[(3 pi)/(4),pi] (d) none-existent

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is