Home
Class 11
MATHS
log2 a =p , log4 b= p^2 , log(c^2) 8 = 2...

`log_2 a =p , log_4 b= p^2 , log_(c^2) 8 = 2/(p^3+1)` . If `log(c^8/(ab^2))=(alphap^3 - betap^2-gammap+delta)` where `alpha,beta,gamma,delta in N` , then find the value of `(alpha+beta+gamma+delta)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is

Given log_(3)a=p=log_(b)c and log_(b)9=(2)/(p^(2)) and log_(9)((a^(4)b^(3))/(c))=alpha p^(3)+beta p^(2)+gamma p+delta(AA p=R-{0} then (alpha+beta+gamma+delta) equals to :

if alpha,beta the roots x^(2)+x+2=0 and gamma,delta the roots of x^(2)+3x+4=0 then find the value of (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)

Consider an equation log_(2)(alpha^(6)-16 alpha^(3)+66)+sqrt(4 beta^(4)-8 beta^(2)+13)|[(gamma)/(3)-2]|=4 where alpha,beta,gamma are integers and m,n and r are the number of value of alpha,beta and gamma respectively which satisfy the above equation.The number of ordered triplets (alpha,beta,gamma) is: ( A) 2(B)3(C)6(D)9

If (alpha,beta) and (gamma,delta) where alpha lt gamma , are the turning points of f(x)=2x^(3)-15x^(2)+36x-8 , then alpha-gamma-beta+delta=

alpha,beta are the roots of the equation x^(2)-4x+lambda=0, and gamma,delta are the roots of the equation x^(2)-64x+mu=0. If alpha,beta,gamma,delta form an increasing G.P,find the values of alpha,beta,gamma,delta

If alpha and beta are roots of x^2-3x+p=0 and gamma and delta are the roots of x^2-6x+q=0 and alpha,beta,gamma,delta are in G.P. then find the ratio of (2p+q):(2p-q)

Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the roots of the equation x^4-x^3-x^2-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=

Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the roots of the equation x^4-x^3-x^2-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=