Home
Class 12
MATHS
" If "Tan^(-1)x+tan^(-1)y+tan^(-1)z=pi,"...

" If "Tan^(-1)x+tan^(-1)y+tan^(-1)z=pi," prove that "(x+y+z)=xyz

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi then prove that x+y+z = xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1