Home
Class 12
MATHS
" If "x=sin t" and "y=sin^(3)t," then "(...

" If "x=sin t" and "y=sin^(3)t," then "(d^(2)y)/(dx^(2))" at "t=(pi)/(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos(2t) and y=sin^(2)t then what is (d^(2)y)/(dx^(2))

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

If y = sin t and x = 2 t then (d^(2)y)/(dx^(2)) =

If a. ne 0 , x = a (t + sin t) and y = a (1- cos t) then (d^(2) y) /dx^(2)" at "t = (2pi)/ 3 is

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)