Home
Class 12
MATHS
" Let "f(k)(x)=(1)/(k)(sin^(t)x+cos^(t)x...

" Let "f_(k)(x)=(1)/(k)(sin^(t)x+cos^(t)x)" where "x" belongs to real number and k grater are equal to "1" then "f_(4)(x)-f_(6)(x)" equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k ge1 , then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k>=1. Then f_(4)(x)-f_(6)(x) equals

Let f_k(x)=(1)/(k)(sin^k x+ cos^k x) " where " x in R and k ge 1 . Then f_4(x)-f_6(x) equals

Let f_k(x)=1/k(sin^k x+cos^k x) Then f_4(x)-f_6(x) =

If f_(k) (x) = (1)/(k)(sin^(k) x + cos^(k)x) where x in R,k le 1 the f_(4)(x)-f_(6)(x)=

Let f_(k) ""=(1)/(k) ( sin ^(k) x + cos^(k)x), where x in RR and k gt 1 then f_(4) (x)- f_(6)(x) equals -