Home
Class 12
MATHS
Prove that: sin^2A=cos^2(A-B)+cos^2B-2c...

Prove that: `sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

Prove that: sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that cos^2A+cos^2B-2cosAcosBcos(A+B)=sin^2(A+B) .

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

Prove that cos(A+B) cos(A-B)-sin(A+B) sin(A-B)=cos 2A.

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA