Home
Class 11
MATHS
lim(x->1)((x-1)/(sqrt(x^2-1)+sqrt(x-1)))...

`lim_(x->1)((x-1)/(sqrt(x^2-1)+sqrt(x-1)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(x-1)/(sqrt(x)-1)=

lim_(x rarr1)(x^(2)-sqrt(x))/(sqrt(x-1))

lim_(x->2)(sqrt(x-1)-1)/(x-2)

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

lim_(x rarr oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^(-1){((2x+1)/(x-1))^(x))) is equal to

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

lim_(x rarr 1)(x-1)/(sqrt(x+3)+2)=