Home
Class 12
MATHS
The sum S = lim(n->oo) [1/(n+1) + 1/(n+2...

The sum `S = lim_(n->oo) [1/(n+1) + 1/(n+2) + 1/(n+3) + --------+1/(2n) ]` is equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo) [1/(2n+1)+1/(2n+2)+…….+1/(2n+n)]=

lim_(n rarr oo) {1/n+1/(n+1)+1/(n+2)+…..+1/(3n)} =

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_(n rarr oo) 1/2 [(n+1)(n+2)…….2n]^(1/n) =

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to