Home
Class 11
MATHS
Find the degree of the polynomial 1/(sqr...

Find the degree of the polynomial `1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

(1)/(sqrt(4x+1)){((1+sqrt(sqrt(x+1)))/(2))^(n)-((1-sqrt(4x+1))/(2))^(n)}=a_(0)+a_(1)x

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

The expression (1)/( sqrt( 3x +1)) [ ( ( 1+ sqrt( 3x + 1))/(2))^(7) - (( 1- sqrt ( 3x +1))/(2))^(7)] is a polynomial in x of degree eual to

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

Degree of the polynomial (x^(2)-sqrt(1-x^(3)))^(4)+(x^(2)+sqrt(1-x^(3)))^(4) is

Degree of the polynomial [sqrt(x^(2)+1)+sqrt(x^(2)-1)]^(8)+[(2)/(sqrt(x^(2)+1)+sqrt(x^(2)-1))]^(8) is.

(1)/(sqrt(21+4x-x^(2)))

int(2x-7)/(sqrt(4x-1))*dx