Home
Class 11
MATHS
Prove that sqrt(10)[(sqrt(10)+1)^(100)-(...

Prove that `sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)]` is an even integer .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(20){(sqrt(20)+1)^(100)-(sqrt(20)-1)^(100)} is a/an ___________

sqrt(7+2sqrt(10))

sqrt(x-6)-sqrt(10-x)>=1

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that: sin36^(0)=(sqrt(10-2sqrt(5)))/(4)

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

Prove that ((i+sqrt3)/2)^100+((i-sqrt3)/2)^100 +1=0.

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)

Solve : (sqrt(10+3x)+sqrt(10-3x))/(sqrt(10+3x)-sqrt(10-3x))=3.

int(dx)/(sqrt(x)(root(4)(sqrt(x)+1))^(10))