Home
Class 11
MATHS
Show that lim(h->0) ((sin(x+h))^(x+h)-(...

Show that `lim_(h->0) ((sin(x+h))^(x+h)-(sinx)^x)/h=(sinx)^x[x cotx+In sinx]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(h rarr0)((sin(x+h))^(x+h)-(sin x)^(x))/(h)=(sin x)^(x)[x cot x+In sin x]

lim_(x->0)|sinx|/x

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

lim_(x to 0) (sin(sinx))/x

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

Show that lim_(xrarr0)(x^2sin(1/x))/(sinx)=0

lim_(h rarr0)(sin(x+h)-sinx)/(h)

lim_(x to 0) (e^x-e^sinx)/(x-sinx)