Home
Class 9
MATHS
If (4^(n+1).2^n-8^n)/(2^(3m))=3/8 then p...

If `(4^(n+1).2^n-8^n)/(2^(3m))=3/8` then prove that `n+1=m`

Promotional Banner

Similar Questions

Explore conceptually related problems

if (9^(n)*3^(2)*(3^(-(n)/(2))hat -(-2))-27^(n))/(3^(3m)*2^(3))=(1)/(27) then prove that m-n=1

If (9^n\ xx\ 3^2\ xx\ (3^(-n/2))^(-2)-\ 27^n)/(3^(3m)\ xx\ 2^3)=1/(27) , prove that m-n=1

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If (9^n*3^2*(3^(-n/2))^(-2)-(27)^n)/(3^(3m)*2^3)=1/(27), Prove that m-n=1.

If U_(n)=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n), then prove that U_(n+1)=8U_(n)-4U_(n-1)

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , prove that m-n=1.