Home
Class 12
MATHS
Iff(x)=x tan^(-1)x," then "f'(1)" is cqu...

Iff(x)=x tan^(-1)x," then "f'(1)" is cqual to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x*tan^(-1)x," then: "f'(1)=

If f(x) = x tan^(-1)x , then f^(')(1) is equal to

If f(x)=x tan^(-1)x, then f'(1) equals

If : f(x)=x*tan^(-1)x," then: "f'(1)=

If f(x)=tan^(-1)cot x, then

If f'(x)=tan^(-1)x then f(x) is equal to ?

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :