Home
Class 9
MATHS
" (vi) "(sqrt(2)+(1)/(sqrt(2)))^(2)...

" (vi) "(sqrt(2)+(1)/(sqrt(2)))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum the series to infinity : sqrt(2)- (1)/(sqrt(2))+(1)/(2(sqrt(2)))-(1)/(4sqrt(2))+ ....

For the serioes 2+(sqrt(2)+(1)/(sqrt(2)))+((2sqrt(2)-1)+(1)/(2))+((3sqrt(2)-2)+(1)/(2sqrt(2)))+

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

If 0 < x < pi/2 , intsqrt(1+secx)dx=2sin^(-1)(asin^(-1)(x/b))+C , where C is arbitrary constant, then ordered pair (a , b) is (1,sqrt(2)) (2) (sqrt(2),1) (sqrt(2),2) (4) (2,sqrt(2))

If 0 < x < pi/2 , intsqrt(1+secx)dx=2sin^(-1)(asin^(-1)(x/b))+C , where C is arbitrary constant, then ordered pair (a , b) is (1,sqrt(2)) (2) (sqrt(2),1) (sqrt(2),2) (4) (2,sqrt(2))

The sum of infinite terms of the geometric progression (sqrt(2)+1)/(sqrt(2)-1),(1)/(2-sqrt(2)),(1)/(2),... is

Find the sum of the following geometric series: sqrt(2)+(1)/(sqrt(2))+(1)/(2sqrt(2))+rarr8 terms