Home
Class 12
MATHS
" Let "f(x)=e^(x),g(x)=sin^(-1)x" and "h...

" Let "f(x)=e^(x),g(x)=sin^(-1)x" and "h(x)=f(g(x))" then "(h'(x))/(h(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

If f (x) = e ^(x) , g (x) = Sin ^(-1) x and h (x) =f (g (x)), then (h'(x))/(h (x))=

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x) , then f(g(h(x))) is :

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

Let f(x)=sinx,g(x)=x^2 and h(x) = log x. If F(x)=(h(f(g(x)))) , then F'(x) is:

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to