Home
Class 9
MATHS
(4)/((216)^(-(2)/(3)))+(1)/((256)^(-(3)/...

(4)/((216)^(-(2)/(3)))+(1)/((256)^(-(3)/(4)))+(2)/((243)^(-(1)/(5)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))

(7)/((343)^(-(2)/(3)))+(1)/((216)^(-(2)/(3)))+(3)/((625)^(-(1)/(4)))

The value of (1)/((216)^(-2/3))+(1)/((256)^(-3/4))+(1)/((32)^(-1/5)) is a.102 b.105c.107d.109

((16)^((1)/(4)))/((27)^((1)/(3)))+((625)^((1)/(4)))/((81)^((1)/(4)))-(1)/((243)^((1)/(5)))=2

{((216)/(64))^((2)/(3))*(((256)/(81))^(-(1)/(4)))/(((16)/(144))^(-(1)/(2)))}^((1)/(2))

Simplify each of the following: (i) (16)^((1)/(5))xx(2)^((1)/(5)) (ii) ((243)^((1)/(4)))/((3)^((1)/(4)))

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

4xx(256)^((-1)/4) div (243)^(1/5)=

((1)/(216))^(-2/3)-:((1)/(27))^(-4/3)=? a.(3)/(4)b*(2)/(3) c.(4)/(9)d.(1)/(8)