Home
Class 12
MATHS
The function f(x)=(tanx^(11))e^(x^5) sgn...

The function `f(x)=(tanx^(11))e^(x^5) sgn(x^(11))*[1/(3x^2+2)]` ,where [.] denotes greatest integer functin

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = tan(x)^(11)e^(x^5)sgn(x^(11)).[1/(3x^2+2)] , where [.] denotes greatest integer function , is a)even function b)odd function c)even as well as odd function d)neither even nor odd function

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then