Home
Class 12
MATHS
" I2."quad y=sin^(-1)((1-x^(2))/(1+x^(2)...

" I2."quad y=sin^(-1)((1-x^(2))/(1+x^(2))),0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^(2))/(1+x^(2))),0

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Find dy/dx If y=sin^(-1)(frac(1-x^2)(1+x^2)) , 0 < x < 1

y = sin^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

Find dy/dx in the following: y=sin^-1((1 - x^2)/(1+x^2), 0

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}