Home
Class 12
MATHS
c o s e c^2(alpha+beta)-sin^2(beta-alpha...

`c o s e c^2(alpha+beta)-sin^2(beta-alpha)+sin^2(2alpha-beta)=cos^2(alpha-beta)` where `alpha,beta in (0,pi/2),` then `sin(alpha-beta)` is equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 where alpha,beta in [0,pi/2] , then tan(2alpha+beta)=

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)