Home
Class 11
MATHS
(1-w+w^(2))=(1+w-w^(2))=4...

(1-w+w^(2))=(1+w-w^(2))=4

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, (1-w+w^2)^4+(1+w-w^2)^4=-16

If w be an imaginary cube root of unity, prove that (1-w+w^2)^2+(1+w-w^2)^2=-4

(1-w^2+w^4)(1+w^2-w^4)

If i=sqrt(-1),w is non real cube root of unity then ((1+i)^(2n)-(1-i)^(2n))/((1+w^(4)-w^(2))(1-w^(4)+w^(2)))

If w is an imaginary cube root of unity then prove that (1-w+w^2)(1-w^2+w^4)(1-w^4+w^8)....... " to " 2n "factors" =2^(2n) .

(1-omega+omega^(2))(1+omega-omega^(2))=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to